Cayenne Data View Design and
Applications

Andriy Shapochka, ObjectStyle Group

Table of Contents

L 1104 7= = P 1

(D= r= YA T= T o g [o1 o £ 3

(D= = YT = TV 1 AN o o 8

0B o N = PP 13

Dependencies and REQUITEIMENTSiiuu ettt e e e et e et e e e et eaea e aeanaaeees 13
Rationale

The Cayenne framework provides means to develop persistent layers of domain objects and wraps the
JDBC specific logic so that the solid part of manipulations with the data can be performed uniformly
and in terms of pure domain Java objects. While this greatly simplifies the design and the implementa-
tion of business tiers and the persistense related operations there usually remains a time consuming task.
It comprises the building of the presentation layer and binding it with the business and data objects
based on Cayenne. One who has the experience of the Swing GUI development knows how much time it
takes to work out all the minutest details of formatting, in-place input validation, handling the interactive
data modification, enforcing naming, order, and formatting consistensy, etc. Whenever the domain or re-
guirements change, for example, new attributes are added to an ObjEntity, formats or captions for some
kind of data are modified, or relationships acquire a meaning different from the origina one, the de-
veloper is faced with the necessity to go through the number of Swing data models, panels, various help-
ers fishing out the bits of code to be corrected. Another important feature is easiness of the prototyping
of data aware GUIs. Those who, at one time or another, worked with Borland VCL for C++ or Delphi or
DataExpress/dbSwing for Java and similar frameworks could recall how painless it was to create a
rough prototype of the GUI working with the relational database and bind it to the actual data. That was
possible due to the layer of easily configured data aware classes and components. And once the working
prototype had been ready its refinement went smoothly.

Having more than a yearlong experience in the development and the maintainance of the Swing GUIs
built on top of the Cayenne framework with one of the major requirements the GUIs must be quickly
and seamlessly integrated with the database schemas that have similar structure in the main and still may
greatly differ in what extra data they store and how these data should be rendered and modified interact-
ively, the author decided to try and come up with an approach to deal with the problems enumerated
above. One can imagine the idea of Cayenne Data Views as a bridge between the domain defined in
terms of Cayenne DataObjects and a presentation layer built with Swing. In fact, they may be used in the
Web environments as well but Swing interfaces is the main direction of the ongoing effort. Conceptu-
ally, Data Views are close to the application facades described, for instance, by Martin Fowler. The fol-
lowing figure outlines the responsibilities and the applicability area of the "Cayenne Data View" subpro-
ject.

Cayenne Data View Design and Applications

ore Configuration in Use Data “Wiews

the Easy-to- Modeler GU1to Edit
Urderstand XML the XML
Forrat Configuration

.'ilb:'“ wincludes ':’?

aincluden . .
Select Conwvenient
Bind with Cayenne Dzta Types for
Data Layer Presertation
Define Formats
. wincludes N
zincludes .’ o
. r -
. : =7 gincludes
d---'"---::-\?'
Define Fresertation Rules | sincludes
for ObjErtities [
wincludas "5

Define Captions

wincludes

Define walidation

Erforce Consistency of
Format=, Order, Label s,
“alidation Rules in the
Presentation Layer

Rules

Swing GUI
Deweloper

U=e and extend
specialized
Factory, Builder,
Atomate the Building of Litility Classes

the Presentation Layer
wincludes

wincludes

wincludes

Ltilize Predefined
Renderers and
Editor=

Listen to the High
Lewel Cayenne Data
Change Ewvents

Use Cayenne
Oriented Swing
Data Models

The validation rules mentioned in the Use Cases are meant to be "lightweght", i.e. it is generally agreed
the validation related code to enforce the business rules should be located in the domain area but, still,
there are various checks one could prefer to perform right in the presentation layer like inclusion in a
predefined range of values, correct input format, sometimes, even preliminary credit card number valid-
ity check with the well known Luhn agorithm, the other kinds of sanity checks. Presently the validation
ison thelist of the featuresto be added. Seethe"To Do List" at the end of the document.

Perhaps, it should be emphasized this project is not an attempt to create a plug to any barrel with the
ready made opinions and cures for every kind of blind alley sometimes you happen to find yourself in
when working on the next Cayenne based Swing GUI. On the contrary, all its features and the overall

2

Cayenne Data View Design and Applications

structure grows and is dictated by the everyday problems and solutions arising in the GUI devel opment.
You can use as much of Data View functionality as you like and omit the rest and you can adjust or re-
configure data types, formats, etc. to your liking due to the highly modular structure of the library. In the
nearest future the author plansto add quite realistic examples of the library usage, they all will take their
origin from the real-world applications. The project iswork in early progress and thus immature in many
points, however it already found its uses in the commercial system the snapshots from which you can
seein chapter "Data Viewsin Action"”.

Data View Concepts

The class diagram on the figure below captures the structure of Data Views and how they rely on the
classes in the Cayenne subpackages. As you can see class DataView is the root of the Data View hier-
archy. It serves as a container for ObjEntityViews. While the Data View is represented by a single ob-
ject of type DataView it can incorporate the ObjEntityViews from several Data View configuration files.
This approach is different from the one taken in the case of Cayenne Data Maps where DataMaps are
created per data map file. Thus, as opposite to the case of Data Maps ObjEntityViews can freely refer to
each other whether they are defined in the same configuration file or different ones. The recommended
practice is to store closely related ObjEntityViews in the same XML "module" and define several "mod-
ules' based on the criterion of such closeness. When you load the list of XML files into the DataView
al the (lookup) relationships are resolved automatically and the ObjEntityViews share the same
namespace (so give them different names even if they are located in different XML files). The diagram
aso shows that DataView is associated with severa classes such as
org.objectstyle.cayenne.access.EntityResolver, org.objectstyle.cayenne.dataview.DataTypeSpec,
org.objectstyle.cayenne.dataview.FormatFactory. The instances of these classes participate in the pro-
cess of loading actual Data View files. The main unit of any Data View is ObjEntityView. It always
refers to an ObjEntity defined in one of the used data maps and defines various presentation rules for
this entity. There can be several ObjEntityViews for an ObjEntity, each of them utilized by an applica
tion when appropriate. EntityResolver finds the corresponding ObjEntities by the names as the Data
View is being loaded. Every ObjEntityView must have a name unique in the DataView context. Ob-
jEntityViews contain fields called ObjEntityViewFields. They must be named uniquely within an Ob-
jEntityView. The fields can be of two sorts. The regular "nocalc” fields reference ObjAttributes in the
ObjEntity referred by the parent ObjEntityView. A field describes how the related ObjAttribute will be
rendered and edited, the data type and the formats to use in the presentation layer. It also defines the
caption that is regularly used to name a table column or label the corresponding input control on the
form. It also configures the editability and the visibility of this attribute. Y ou can setup an order in which
the fields appear in a JTable (as columns) or on a form with the preferred index. Y ou can define the de-
fault values for the fields if desired. The FormatFactory described below is used to create actual Format
classes used by the fields. There may be several fields for an ObjAttribute in the ObjEntityView. The
field's data type deserves paying specia heed. Cayenne defines the mapping between several Java Class
types and JDBC types. It is convenient to use and sufficient in many cases but there are al sorts of situ-
ations when one would like to define more specific data types to make use of, especially for the present-
ation purposes. In many cases when Integer is used as a flag you would like to map it to Boolean. Or
you may have a Money type or Date type that holds only year, month, and day values, and so forth. The
ObjEntityViewFields give you this opportunity. They provide the easily extensible system of data types
often used in the business applications. This system takes care of converting values back and forth
between Cayenne data types and application specific data types. It relies on two classes DatalypeEnum
and DataTypeSpec, and both of them can be extended to define new types of any sorts. While the entire
thing may seem redundant at the first glance, actually, it is a powerful concept that can save you alot of
time usually spent on the manua conversions. Back to the kinds of fields. The other sort of Ob-
jEntityViewFieldsis "lookup" fields. They point to the fields defined in other ObjEntityViews so the ac-
tual valuesto display, edit, or select from come from those referenced fields. Such alookup field corres-
ponds to an ObjRelationship with the ObjEntity referred by this its ObjEntityView as a source and the
ObjEntity referred by the lookup ObjEntityView as a target instead of an ObjAttribute. Next the field
identifies which lookup ObjEntityView and which particular field it wants to use as a lookup. These de-
pendencies are resolved when the data views are loaded into memory. Class LookupCache helps main-
tain and map to data objects lists of values used in lookup combo boxes and lists. Thus you can describe

Cayenne Data View Design and Applications

the rules of visual editing the relationships or make aggregated views base on the related entities. One
more useful feature is a centralized EventDispatcher within the DataView class. It is used by the fields
to fire the events whenever their values are changed. Thus the ObjAttribute/ObjRelationship modifica
tions can be easily propagated to all the listening components.

datawiew::DataType Spec datzwiew: FormatFactory datawiews::LookupCache
-
-dataTypeSpec -formatF actony -lookupCache
access:EntityResolwer
datawiew: :BventDi spatcher
+eantityResolver
datawview::Dataview -fieldWalueChangeDlispatcher
-oliner
rap::0bj Entity datawviews:: 0bj Ertityiew
+objEntity -olner
map::ObjAttribute dataview:: ObjEntibyviewField
+abjattribute -leckupField

+displayForm at, editFormat
+abjRelationship

Evertlistemer Jj=wa text:Format
m=p::0bjRelationship
-caIcType\
-dataType izl ered Eruir ;
Valred Ema datawiew::CalcType Enum

dataview:: DataType Enum 4&'—'

org.objectstyle.cayenne.dataview.FormatFactory depicted on the next figure provides the means to cre-
ate instances of the edit and display formats used by ObjEntityViewFields. There are severa formats
defined in the java.text package. In turn, the dataview library defines convenient MapFormat somewhat
similar to javatext.ChoiceFormat. instead of formatting doubles by inclusion in range criterion as
ChoiceFormat does it maps a set of objects of any type to string values. For example you can map
Booleans to "Sure" and "No way" strings or you can map String keys to some descriptive String values,
etc. It iseasy for usersto add custom formats of their own. They should subclass FormatFactory and cre-
ate new Builders for their formats. That done, all they need is to configure the display and edti formats
in ObjEntityViewFields with the class names of their Format classes and the patterns (and, maybe, some
other properties).

Cayenne Data View Design and Applications

datzwiew: Format Factory

FormatFactoni

credteFormatClass, Locale, Map): Format
registerBuildenClass, Builder) : Builder
unregisterBuildenClass) : Builder
getBuildenClazss) : Builder

winner classa
datawiews:: 5impleDate For mat Builder

+ + + + +

-4+ oreateilocale, Map): Format

winner classs f-’fll.'

dafaview: Builder

{j winner classs
+ ceatelocale, Map) Fomiat TT T s - - dataview:: ChaoiceFor mat Buil der

tﬁ' :* T + create(locale, Map): Format
r b -
v - e
1 - -
1 - h"'-\.
1 L
1 . g
‘ . winner classwe
[
‘ . datawview:: MessageFor mat Builder
S
winner classa t
datawiewe::Map For mat Buil der . + createllocale, Map): Format
x'\-\.
s
L
+ createllocale, Map): Format .

winner classw
datawiew::Decimal Format Builder

Fomat + createllocale, Map): Format

datawview: MapFormat

The following figure presents the utility class CellRenderers and severa ready-to-use cell renderers for
different types of ObjEntityViewFields. They are used in JTables, JLists, and JComboBoxes. The meth-
ods defined in the CellRenderers class will save your time when configuring a JTable to render values of
the types available for use with ObjEntityViewFields

Cayenne Data View Design and Applications

datawiew::Cell Renderers

createFormatTableCellRenderanFarmat, String, String, int) : FormatRenderer
createBooleanTableCellRenderen): BooleanRenderar
createlefaultTableCellRenderanint) : ObjectRendearar
createTableCellRenderenObjEntibyfiewField) : TableCellRendearer
createFormatListCellRenderenF ormat, String, String, int) : ListCellRenderar
createlistCellRenderen0ObjEntityWiewFiald) : ListCellRendarer
installRenderzald Table) : waid

installRenderenlLlist, ObjEntityfiewField) : vaid

installRenderandCombaoB oz, ObjEntibSfiewField): waid

i

winner ¢lasss
dataviews: BooleanRenderer

o+ o+ o+ o+

winner classs
datawvievw: :FormatRenderer

winner classs
datawiews: FormatList Cell Renderer

winner olasss
datawview: ObjectRenderer

The purpose of CellEditors is the same as that of CellRenderers. The editors are used when there is a
need to edit datain JTables and such.

datawview::Cell Editors

createF ormattedFieldEditondFormatted TextField. AbstractF armatter, int) : FormattedFieldEditor
createFormattedFizldEditonFormat, int): FormattedFizldEditar
createFormattedFieldEditan’String, int) : FormattedFieldEditar

create TexdFieldEditon]int) : TextFialdEditor

createCheckBoxEditon]) : ChediBoxE ditor

createComboBoxEditoComboBoxidodel, ListCellRenderer) : ComboBoxEditar P SpinnerEditondSpinner
createButtonEditonButton) : ButtonEditor
createSpinnerEditonSpinnertdodel, Format) : SpinnerEditor
createTableCellEditonObjEntityfiewField) : TableCellEditor
installEditorald Table) : woid

/g winner classa

ainner classs datawview:: ComboBoxEditor
dataview::CheckBox Editor

ainner classe
datawiews:: Spinner Editar

+E o+ F o+ o+ o+

+ ComboBoxEditondComboBox

+ CheckBoxEditond Che kB o)

cinner classw winner classs

dataviews:For mattedFieldEditor dataview: TextFieldEditor

+ FormattedFizldEditondFormatted T extFizld)
+ getTableCellEditorCamponentTable, Object, boolean, int, int) : Component

+ TextFieldEditond TextField)

The convenient notion of DataObjectList is defined in the library. It is a specialized container to store
Cayenne DataObjects (usualy of the same type). It fires events when modified and DOTableModel,

6

Cayenne Data View Design and Applications

DOListModel, DOComboBoxModel wrap it and being configured with an ObjEntityView / Field are
handy to provide access to these data objects with JTables, JLists, and JComboBoxes. In fact, they make
the visual components data aware.

datawiew: Ewvertlispatcher

#changelispatcher

Anstrachiist
datawview::DataObjectli=t
#dataObjects -dataCibjects
Abshactliztidbde) AbstactTzaleldde)
datawview::DOList Model datzwiews: :D0OTablemModel
CosmboSoxdode)

dataview:: DO ComboBoxkModel

Thisisthe Data View DTD in full. There are no comments in it yet. On the other hand it is small. And
the names are self-explanatory once you got to know the Data View structure. Y ou can see the examples
of its usage in the next chapter.

<!l ELEMENT caption (#PCDATA) >

<l ELEMENT data-view (obj-entity-view) >

<! ELEMENT defaul t-val ue (#PCDATA) >

<! ELEMENT pattern (#PCDATA) >

<l ELEMENT edit-format (pattern?) >

<I ATTLI ST edit-format class NMIOKEN #REQUI RED >

<!l ELEMENT di spl ay-format (pattern?) >

<I ATTLI ST di spl ay-format class NMIOKEN #REQUI RED >
<! ELEMENT | ookup EMPTY >

<! ATTLI ST | ookup obj-entity-vi ew nane NMIOKEN #REQUI RED >
<! ATTLI ST | ookup fi el d-name NMIOKEN #REQUI RED >
<IELEMENT field (caption?, |ookup?, edit-formt?,

di splay-format?, default-value?) >
<I ATTLI ST field obj-rel ati onshi p-nane NMIOKEN #| MPLI ED >

Cayenne Data View Design and Applications

<! ATTLI ST f
<! ATTLI ST f
<! ATTLI ST f
<! ATTLI ST f
<! ATTLI ST f
<! ATTLI ST f

el d pref-index NMIOKEN #| MPLI ED >
el d name NMIOKEN #REQUI RED >
eld editable (false | true) #REQU RED >
el d obj-attribute-nane NMIOKEN #| MPLI ED >
eld calc-type (nocalc | |ookup) #REQU RED >
eld data-type (Cbject | String | Money |
Integer | Double | Percent
Date | Datetinme | Bool ean) #REQUI RED >
<IATTLI ST field visible (false | true) #REQUI RED >

<l ELEMENT obj-entity-view (field+) >
<I ATTLI ST obj-entity-vi ew nane NMIOKEN #REQUI RED >
<I ATTLI ST obj-entity-view obj-entity-name NMICKEN #| MPLI ED >

Data Views in Action

This chapter shows the results of application of Data Viewsin avisual administration tool. The peculiar-
ity was that while the main participating ObjEntities were known at the time of development the lists of
their attributes would vary and contain different attributes for different client systems. Also the lookup
ObjEntities (database tables) referred by the main ObjEntities were not defined preliminarily. Therefore
a simple enough way to reconfigure the interface without actual recoding was required. Here the admin-
istration tool knows the names of the data views corresponding to the ObjEntities in question only. At
the runtime it uses the information about their fields and various classes from the dataview subpackage
to build the dialogs automatically. It tries to choose the most appropriate editor components (text fields,
formatted fields, combo boxes, choice boxes, etc) and renderers based on the field properties. It also
pays attention to the visibility and editability of the fields and orders the Swing components used to dis-
play or edit the data in the data objects based on the preffered indices defined for the fields. The lookup
entitties are recognized and the data from the corresponding tables are used to provide lists of valuesin
combo boxes or find the value to display in the label bound to the lookup field.

The first example shows an extract from the data view xml file that defines a ObjEntityView and the rel-
evant lookup ObjEntityView for the Claim ObjEntity. The screenshot gives a standard ook of the form
used to search for claims in the database by several criteria. This form builds itself dynamically and re-
cognizes what input fields and labels to display, what formats to use, and even what qualifiers to define
in the SelectQuery.

<obj-entity-view name="Clientd ai nVi ew' obj-entity-name="Cientd ai ni'>
<field nanme="cl ai nSequence"
obj -attri bute-name="cl ai nSequence”
dat a-t ype="1nt eger"
edi t abl e="true"
vi si bl e="true"
pref-index="0"
cal c-type="nocal c">
<capti on>
Sequence #:
</ caption>
<edit-format class="java.text. Deci nal Formt">
<pat t er n>#######</ pat t er n>
</ edit-fornat>
<di spl ay-format cl ass="j ava.text. Deci mal For mat " >
<patt er n>#, ###, ###</ pattern>
</ di spl ay- f or mat >
</field>
<field nane="reportedYear"
obj -attribute-name="reportedYear"
dat a-type="1nt eger"
edi tabl e="true"
vi si bl e="true"

Cayenne Data View Design and Applications

pref-index="1"
cal c-type="nocal c">
<capti on>
Reported Year:
</ capti on>
<edit-format class="java.text. Deci nal Format">
<pat t er n>0000</ pat t er n>
</ edit-fornmat>
<di spl ay-format cl ass="j ava. t ext. Deci nal For mat" >
<pat t er n>0000</ pat t er n>
</ di spl ay- f or mat >
</field>
<field nanme="I| ast Nane"
obj -attribute-name="I ast Nane"
dat a-type="String"
edi tabl e="true"
vi si bl e="true"
pref-index="2"
cal c-type="nocal c">
<capti on>
Last Nane:
</ caption>
</field>
<field nane="first Nane"
obj -attribute-name="firstNane"
dat a-type="String"
edi tabl e="true"
vi si bl e="true"
pref-index="3"
cal c-type="nocal c">
<capti on>
First Nane:
</ caption>
</field>
<field nane="birthDate"
obj -attribute-name="birthDate"
dat a-t ype="Dat e"
edi tabl e="true"
vi si bl e="true"
pref-index="4"
cal c-type="nocal c">
<capti on>
Date of Birth:
</ caption>
<edit-format cl ass="j ava. text. Si npl eDat eFor mat " >
<patt er n>VMM dd/ yyyy</ pattern>
</edit-format>
<di spl ay-format cl ass="j ava.text.Si npl eDat eFor nat " >
<pattern>MM dd/ yyyy</ pattern>
</ di spl ay-f or mat >
</field>
<field name="cl i ent Conpany"
obj -rel ati onshi p- name="cl i ent Conpany"
dat a-t ype="(bj ect "
edi tabl e="true"
vi si bl e="true"
pref-index="5"
cal c-type="1 ookup" >
<capti on>
Conpany:
</ caption>
<l ookup obj-entity-view name="d i ent ConpanyLookup"
fi el d- name="conpanyNane" >
</ | ookup>

Cayenne Data View Design and Applications

</field>
<field nane="bul k"
obj -attri bute-nanme="bul k"
dat a- t ype="Bool ean"
edi tabl e="true"
vi si bl e="true"
pref-index="6"
cal c-type="nocal c">
<capti on>
Bul k:
</ capti on>
<def aul t - val ue>
fal se
</ def aul t - val ue>
</field>
</ obj-entity-view

<obj -entity-vi ew name="C i ent ConpanyLookup"
obj -entity-name="d i ent Conpany"” >
<field nane="conpanyNane"
obj -attri but e- name="conpanyNane"
dat a-type="String"
edi tabl e="f al se"
vi si bl e="true"
pref-index="0"
cal c-type="nocal c"/ >
</ obj-entity-vi ew>

B Reinsurance Requirements ' —|o) x|
File Edit Help
& d & e "9l B Reinsurance Requirements x|

Requirement Graph Find Claim

a1 = 1. Setup the search criteria and press the "Search” button ﬁ/
2. Select a claim to open in the list of the Found claims

3, Press the "OK" butkon

------ Mo Element Selected

Sequence #: | 2000 | - | 5000 | [Search J

2001 | - | 2004 |
}
|- | |
Connpanyy's [Better Insurance Co, v]

Bulk: []

Reported Year:

Lask Marne:

Firsk Mame:

Ciate of Birth:

4511

4517 Sequence #: 4,511

Reparted Year: 2002
Last Mame: ORTHONS
First Name: LILYEUS
Date of Birth: 11/27/1902
Company: Better Insurance Co.,
Bulk: False

Status: 2 claims Found in the database,

equirement Patterns attern Matrix pproval Hierarchies coountability Matrix uestionnaires . Requirements equiremnent Grapi
Requi t Patk Pattern Matri A | Hi i A kability Matri i i q Requi t Graph

The next example is of similar kind. It demonstrates how several lookup fields can be configured to
point to the different fields of intrest in the same lookup view. The resulting ObjEntityView is used to

10

Cayenne Data View Design and Applications

build the dialogs of read-only properties for the user's reviews.

<obj-entity-view name="ClientDirectLiabilityAmuntVi ew'
obj-entity-name="C ientLiabilityAnunt">
<field name="anount"
obj -attri but e- nane="anmount "
dat a-t ype="NMoney"
edi t abl e="f al se"
vi si bl e="true"
pref-index="0"
cal c-type="nocal ¢c">
<capti on>
Amount :
</ capti on>
<di spl ay-fornmat class="java.text. Deci nal Format" >
<pat t er n>$###, ###, ##0. 00</ patt er n>
</ di spl ay-f or mat >
</field>
<field nane="transacti onType"
obj -rel ati onshi p- name="t ransacti onType"
dat a-type="String"
edi tabl e="f al se"
vi si bl e="true"
pref-index="1"
cal c-type="1 ookup" >
<capti on>
Transacti on Type:
</ caption>
<l ookup obj-entity-view nanme="d ient Transacti onTypeLookup"
fiel d-name="descripti on">
</ | ookup>
</field>
<field nane="transacti onAdj ust nent Reason”
obj -rel ati onshi p- nane="t ransacti onType"
dat a-t ype="Bool ean"
edi tabl e="f al se"
vi si bl e="true"
pref-index="1"
cal c-type="1 ookup" >
<capti on>
Adj ust rent Reason:
</ caption>
<l ookup obj-entity-view name="dient Transacti onTypeLookup"
fi el d- name="adj ust ment Reason" >
</ | ookup>
</field>
<field name="transacti onCancel "
obj -rel ati onshi p- name="t ransacti onType"
dat a- t ype="Bool ean"
edi tabl e="f al se"
vi si bl e="true"
pref-index="2"
cal c-type="1 ookup" >
<capti on>
Cancel :
</ caption>
<l ookup obj-entity-view name="d ient Transacti onTypeLookup"
fi el d- name="cancel ">
</ | ookup>
</field>
</ obj-entity-view

<obj -entity-vi ew name="C i ent Transacti onTypeLookup"

11

Cayenne Data View Design and Applications

obj -entity-nanme="Cient Transacti onType">
<field nane="description"
obj -attribute-nanme="description"
dat a-type="String"
edi tabl e="f al se"
vi si bl e="true"
pref-index="0"
cal c-type="nocal c"/ >
<field nane="adj ust ment Reason"
obj -attri but e- nane="adj ust nent Reason"
dat a-t ype="Bool ean"
edi t abl e="f al se"
vi si bl e="true"
pref-index="1"
cal c-type="nocal c"/ >
<field nanme="cancel "
obj -attri bute-nanme="cancel "
dat a-t ype="Bool ean"
edi tabl e="f al se"
vi si bl e="true"
pref-index="2"
cal c-type="nocal c"/ >
</ obj-entity-vi ew>

HE Reinsurance Requirements] £

File Edit Help

2s a0 BRRREBR

Requirement Graph

Requirements

B Claim 4,511 o | Type | m—
El-$ Claim Detail abba

- Claim Lisbity LEGAL EXPEN B Reinsurance Requirements x|
E$ Clairn Liability MAAR Claim Liability Amount _}/
Loy Clairn Liability Arount - Essential client element properties, oy

..... % Claim Liability Amount $ The data is taken from the claim system database.
b Clairn Liabiliey Amourt $
Clairm Liability IMVESTIGATIY Information \

$ Claimn Liabilicy INTEREST
[-2 Cancel {id: 6} Amount: $10,000.00

Transaction Type: PAYMENT

Adjustment Reason:

Cancel:

Close

[»]

Requirernent Patterns f Pattern Matrix f Approval Hierarchies f Accountability Matrix f Questionnaires , Requirements / Requirement Graphf

Y ou might notice the XML configuration files have very simple and easily understood structure and the
configuration can be used in a number of ways. It is needless to say the manual editing of such files
would be the most cumbersome task that no one could be content with. Luckily the GUI tool called
"Data View Modeler" and intended to simplify the editing of the configuration files is about to come in-
to good shape. Then the work with data view configuration files will be no more difficult than the Cay-
enne data map modification in the Cayenne Modeler.

12

Cayenne Data View Design and Applications

To Do List

The list given below summarizes the directions of the further development and the useful features not
supported yet but already kept in mind.

» Extendthe DTD and javalibrary to support validation rules, at least the range validation.

» Finish the DataView Modeler

» Make dataview configuration an optional part of the Cayenne project, extend the project's DTD ac-
cordingly.

» Give abetter thought to the internationalization. Support internationalized field captions at |east.

» Create or import specialized classes for the Money, Date, Datetime, Percent (?) types. In fact, it was
planned to add the home grown Money type to the framework but as this type is going to be imple-
mented in Apache Commons Lang, the author has decided to sit on his back and wait the results for
awhile.

» Consider the possibility of adding the Text Mask format to the library. Swing has MaskFormatter but
there is no corresponding format in java.text.

e Lookups can be improved on to listen to the data changes in the corresponding data object lists.

» Add the notion of the order based on the field values (Iexicographic, natural, etc) so whenever a user
has a need to sort some table of data objects by values in a column we would know how to do that.

* Implement custom tree renderers and a tree model.

* Add easy to use GUI factories to build forms for ObjEntityViews dynamically, based on the JGood-
iesformslibrary.

» Implement conditional data view configuration loading so the application could choose which data
views are appropriate for a given set of ObjEntities.

» Introduce calculated fields. They will not correspond to predefined ObjAttributes, instead, their val-
ues would be calculated on the fly.

» Extend the data view DTD to give more hints to the GUI components how to build themselves and
function in different situations. This must be well pondered over.

Dependencies and Requirements

There are several things that are needed to compile and use the Data View code located in the
org.objectstyle.cayenne.dataview package.

e JSDK 1.4. Normally the bulk of Cayenne needs JSDK 1.3 but "Cayenne Data Views" is assumed to
be used for the Swing GUI development and so the choice of Java version should not be an issue.

e Cayenne 1.0. In fact, the code should work with the earlier beta versions as well. When the support
of Data Views is added to Cayenne projects the library will stop working with the previous versions
of Cayenne

13

Cayenne Data View Design and Applications

* Apache Jakarta Commons-Lang 2.0 or later.

 JDOM beta9 or later.

14

